
CS152: Computer Systems Architecture
Pipelining

Sang-Woo Jun

Winter 2021

Large amount of material adapted from MIT 6.004, “Computation Structures”,
Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,

and CS 152 Slides by Isaac Scherson

Eight great ideas

❑ Design for Moore’s Law

❑ Use abstraction to simplify design

❑ Make the common case fast

❑ Performance via parallelism

❑ Performance via pipelining

❑ Performance via prediction

❑ Hierarchy of memories

❑ Dependability via redundancy

But before we start…

Performance Measures

❑ Two metrics when designing a system

1. Latency: The delay from when an input enters the system until its
associated output is produced

2. Throughput: The rate at which inputs or outputs are processed

❑ The metric to prioritize depends on the application
o Embedded system for airbag deployment? Latency

o General-purpose processor? Throughput

Performance of Combinational Circuits

❑ For combinational logic
o latency = tPD

o throughput = 1/tPD

X Y

Is this an efficient way of using hardware?

X

F(X)

G(X)

H(X)

F and G not doing work!
Just holding output data

Source: MIT 6.004 2019 L12

Pipelined Circuits

❑ Pipelining by adding registers to hold F and G’s output
o Now F & G can be working on input Xi+1 while H is performing computation on Xi

o A 2-stage pipeline!

o For input X during clock cycle j, corresponding output is emitted during clock j+2.

Y

Assuming latencies of 15, 20, 25…

F(X)

G(X)

H(X)

Assuming ideal registers

15

20

Source: MIT 6.004 2019 L12

25

Pipelined Circuits

20+25=45 25+25=50

Latency Throughput

Unpipelined 45 1/45

2-stage pipelined 50 1/25(Worse!) (Better!)

Source: MIT 6.004 2019 L12

Pipeline conventions

❑ Definition:
o A well-formed K-Stage Pipeline (“K-pipeline”) is an acyclic circuit having exactly K

registers on every path from an input to an output.

o A combinational circuit is thus a 0-stage pipeline.

❑ Composition convention:
o Every pipeline stage, hence every K-Stage pipeline, has a register on its output (not

on its input).

❑ Clock period:
o The clock must have a period tCLK sufficient to cover the longest register to register

propagation delay plus setup time.

K-pipeline latency = K * tCLK K-pipeline throughput = 1 / tCLK

Source: MIT 6.004 2019 L12

Ill-formed pipelines

❑ Is the following circuit a K-stage pipeline? No

❑ Problem:
o Some paths have different number of registers

o Values from different input sets get mixed! -> Incorrect results
• B(Yt-1,A(Xt)) <- Mixing values from t and t-1

A

B

CX

Y

2

2

1

Source: MIT 6.004 2019 L12

A pipelining methodology

❑ Step 1:
o Draw a line that crosses every output in the

circuit, and mark the endpoints as terminal points.

❑ Step 2:
o Continue to draw new lines between the terminal

points across various circuit connections, ensuring t
hat every connection crosses each line in the same direction.

o These lines demarcate pipeline stages.

❑ Step 3:
o Add a pipeline register at every point where a separating line crosses a connection

Strategy: Try to break up high-latency elements,
make each pipeline stage as low-latency as possible!

Source: MIT 6.004 2019 L12

Pipelining example

❑ 1-pipeline improves neither L nor T

❑ T improved by breaking long combinational
path, allowing faster clock

❑ Too many stages cost L, not improving T

❑ Back-to-back registers are sometimes
needed for well-formed pipelines

Source: MIT 6.004 2019 L12

Hierarchical pipelining

❑ Pipelined systems can be hierarchical
o Replacing a slow combinational component with a k-pipe version may allow faster

clock

❑ In the example:
o 4-stage pipeline, T=1

Source: MIT 6.004 2019 L12

Sample pipelining problem

❑ Pipeline the following circuit for maximum throughput while minimizing
latency.
o Each module is labeled with its latency

2 3 4 2 1

4

What is the best latency and throughput achievable?

Source: MIT 6.004 2019 L12

Sample pipelining problem

❑ tCLK = 4

❑ T = ¼

❑ L = 4*4 = 16

2 3 4 2 1

4

When pipelines are not deterministic

❑ Lock-step pipelines are great when modules are deterministic
o Good for carefully scheduled circuits like a well-optimized microprocessor

❑ What if the latency of F is non-deterministic?
o At some cycles, F’s pipeline register may hold invalid value

o Pipeline register must be tagged with a valid flag

o How many pipeline registers should we add to G? Max possible latency?

o What if F and G are both non-deterministic? How many registers?

F

G

HX

FIFOs (First-In First-Out)

❑ Queues in hardware
o Static size (because it’s hardware)

o User checks whether full or empty before enqueue or dequeue

o Enqueue/dequeue in single cycle regardless of size or occupancy

o Does use MUX! Large FIFO has long delay

head

tail

…

D
EM

U
X M

U
XData

Enqueue signal

Full? Empty?

Dequeue signal

Data

Counting cycles:
Benefits of an elastic pipeline

❑ Assume F and G are multi-cycle, internally pipelined modules
o If we don’t know how many pipeline stages F or G has, how do we ensure correct

results?

❑ Elastic pipeline allows correct results regardless of latency
o If L(F) == L(G), enqueued data available at very next cycle (acts like single register)

o If L(F) == L(G) + 1, FIFO acts like two pipelined registers

o What if we made a 4-element FIFO, but L(F) == L(G) + 4?
• G will block! Results will still be correct!

• … Just slower! How slow? F

G

FX

?

L <- Latency in cycles

Measuring pipeline performance

❑ Latency of F is 3, Latency of G is 1, and we have a 2-element FIFO
o What would be the performance of this pipeline?

❑ One pipeline “bubble” every four cycles
o Duty cycle of ¾ !

F

G

HX

F

G

*Animation

Aside: Little’s law

❑ 𝐿 = 𝜆𝑊
o L: Number of requests in the system

o 𝜆: Throughput

o W: Latency

o Imagine a DMV office! L: Number of booths. (Not number of chairs in the room)

❑ In our pipeline example
o L = 3 (limited by pipeline depth of G)

o W = 4 (limited by pipeline depth of F)

o As a result: 𝜆 = ¾ ! F

G
How do we improve performance?
Larger FIFO, or
Replicate G! (round-robin use of G1 and G2)

CS152: Computer Systems Architecture
Processor Microarchitecture – Pipelining

Sang-Woo Jun

Winter 2021

Large amount of material adapted from MIT 6.004, “Computation Structures”,
Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,

and CS 152 Slides by Isaac Scherson

Course outline

❑ Part 1: The Hardware-Software Interface
o What makes a ‘good’ processor?
o Assembly programming and conventions

❑ Part 2: Recap of digital design
o Combinational and sequential circuits
o How their restrictions influence processor design

❑ Part 3: Computer Architecture
o Simple and pipelined processors
o Computer Arithmetic
o Caches and the memory hierarchy

❑ Part 4: Computer Systems
o Operating systems, Virtual memory

How to build a computing machine?

❑ Pretend the computers we know and love have never existed

❑ We want to build an automatic computing machine to solve
mathematical problems

❑ Starting from (almost) scratch, where you have transistors and integrated
circuits but no existing microarchitecture
o No PC, no register files, no ALU

❑ How would you do it? Would it look similar to what we have now?

Aside: Dataflow architecture

❑ Instead of traversing over instructions to execute, all instructions are
independent, and are each executed whenever operands are ready
o Programs are represented as graphs

(with dependency information)

A “static” dataflow architecture

Did not achieve market success, (why?)
but the ideas are now everywhere
e.g., Out-of-Order microarchitecture

The von Neumann Model

❑ Almost all modern computers are based on the von Neumann model
o John von Neumann, 1945

❑ Components
o Main memory, where both data and programs are held

o Processing unit, which has a program counter and ALU

o Storage and I/O to communicate with the outside world

Central
Processing

Unit

Main
Memory

Storage
and I/O

Key idea!

Key Idea: Stored-Program Computer

❑ Very early computers were programmed by manually adjusting switches
and knobs of the individual programming elements
o (e.g., ENIAC, 1945)

❑ von Neumann Machines instead had a
general-purpose CPU, which loaded its
instructions also from memory
o Express a program as a sequence of coded

instructions, which the CPU fetches, interprets,
and executes

o “Treating programs as data”

ENIAC, Source: US Army photo

Similar in concept to a universal Turing machine (1936)

von Neumann and Turing machine

❑ Turing machine is a mathematical model of computing machines
o Proven to be able to compute any mechanically computable functions

o Anything an algorithm can compute, it can compute

❑ Components include
o An infinite tape (like memory) and a header which can read/write a location

o A state transition diagram (like program) and a current location (like pc)
• State transition done according to current value in tape

❑ Only natural that computer designs
gravitate towards provably universal models

Source: Manolis Kamvysselis

Stored program computer, now what?

❑ Once we decide on the stored program computer paradigm
o With program counter (PC) pointing to encoded programs in memory

❑ Then it becomes an issue of deciding the programming abstraction
o Instruction set architecture, which we talked about

❑ Then, it becomes an issue of executing it quickly and efficiently
o Microarchitecture! – Improving performance/efficiency/etc while maintaining ISA

abstraction

o Which is the core of this class, starting now

The classic RISC pipeline

Fetch Decode Execute Memory
Write
Back

❑ Many early RISC processors had very similar structure
o MIPS, SPARC, etc…

o Major criticism of MIPS is that it is too optimized for this 5-stage pipeline

❑ RISC-V is also typically taught using this structure as well

Why these 5 stages? Why not 4 or 6?

The classic RISC pipeline

❑ Fetch: Request instruction fetch from memory

❑ Decode: Instruction decode & register read

❑ Execute: Execute operation or calculate address

❑ Memory: Request memory read or write

❑ Writeback: Write result (either from execute or memory) back to register

Major components of a microprocessor

Register file

32-bit

x0
x1
x2
x3
x4
x5

x31

Program
Counter

ALU

32-bit

Main memory

Program
Binary

Working data

…
…

CPU

A high-level view of computer architecture

CPU

Instruction
cache

Data
cache

Shared cache

DRAM

Low latency
(~1 cycle)

High latency
(100s~1000s of cycles)

Will deal with caches in detail later!

Designing a microprocessor

❑ Many, many constraints processors are optimize for, but for now:

❑ Constraint 1: Circuit timing
o Processors are complex! How do we organize the pipeline to process instructions

as fast as possible?

❑ Constraint 2: Memory access latency
o Register files can be accessed as a combinational circuit, but it is small

o All other memory have high latency, and must be accessed in separate
request/response
• Memory can have high throughput, but also high latency

Memory will be covered in detail later!

The most basic microarchitecture

PC

Memory Interface

Instruction
Decoder

Register
File

ALU

❑ Because memory is not combinational, our RISC ISA requires at least
three disjoint stages to handle
o Instruction fetch

o Instruction receive, decode, execute (ALU), register file access, memory request

o If mem read, write read to register file

❑ Three stages can be implemented as a
Finite State Machine (FSM)

① ② ③Will this processor be fast?
Why or why not?

Limitations of our simple microarchitecture

❑ Stage two is disproportionately long
o Very long critical path, which limits the clock speed of the whole processor

o Stages are “not balanced”

❑ Note: we have not pipelined things yet!

PC

Memory Interface

Instruction
Decoder

Register
File

ALU

① ② ③

*Critical path depends on
the latency of each component

Limitations of our simple microarchitecture

❑ Let’s call our stages Fetch(“F”), Execute(“E”), and Writeback (“W”)

❑ Speed of our simple microarchitecture, assuming:
o Clock-synchronous circuits, single-cycle memory

❑ Lots of time not spent doing useful work!
o Can pipelining help with performance?

time

instr. 1

instr. 2

F WE

F WE

Clock cycle due to critical path of Execute

F WE

F WE

Pipelined processor introduction

❑ Attempt to pipeline our processor using pipeline registers/FIFOs

❑ Much better latency and throughput!
o Average CPI reduced from 3 to 1!

o Still lots of time spent not doing work. Can we do better?

Fetch WritebackExecute

time

instr. 1

instr. 2

F WE

F WE

* We will see soon why pipelining
a processor isn’t this simple

Note we need a memory interface with two concurrent interfaces now! (For fetch and execute)
Remember instruction and data caches!

Building a balanced pipeline

❑ Must reduce the critical path of Execute

❑ Writing ALU results to register file can be moved to “Writeback”
o Most circuitry already exists in writeback stage

o No instruction uses memory load and ALU at the same time
• RISC!

PC

Memory Interface

Instruction
Decoder

Register
File

ALU

Building a balanced pipeline

❑ Divide execute into multiple stages
o “Decode”

• Extract bit-encoded values from instruction word

• Read register file

o “Execute”
• Perform ALU operations

o “Memory”
• Request memory read/write

❑ No single critical path which reads and writes to register file in one cycle

Fetch WritebackDecode Execute Memory

Results in a small number of stage with relatively good balance!

Execute

Ideally balanced pipeline performance

❑ Clock cycle: 1/5 of total latency

❑ Circuits in all stages are always busy with useful work

time

Fetch WritebackDecode Execute Memory

Fetch WritebackDecode Execute Memory

Fetch WritebackDecode Execute Memory

instr. 1

instr. 2

instr. 3

Aside: Real-world processors have wide
range of pipeline stages

Name Stages

AVR/PIC microcontrollers 2

ARM Cortex-M0 3

Apple A9 (Based on ARMv8) 16

Original Intel Pentium 5

Intel Pentium 4 30+

Intel Core (i3,i5,i7,…) 14+

RISC-V Rocket 6

Designs change based on requirements!

Will our pipeline operate correctly?

Fetch WritebackDecode Execute Memory

Memory Interface

Register
File

A problematic example

❑ What should be stored in data+8? 3, right?

❑ Assuming zero-initialized register file, our pipeline will write zero
Why? “Hazards”

CS152: Computer Systems Architecture
Achieving Correct Pipelining

Sang-Woo Jun

Winter 2021

Large amount of material adapted from MIT 6.004, “Computation Structures”,
Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,

and CS 152 Slides by Isaac Scherson

A problematic example

❑ What should be stored in data+8? 3, right?

❑ Assuming zero-initialized register file, our pipeline will write zero
Why? “Hazards”

Hazard #1:
Read-After-Write (RAW) Data hazard

❑ When an instruction depends on a register updated by a previous
instruction’s execution results
o e.g.,

Fetch WritebackDecode Execute Memory

i1: add s0, s1, s2

i2: add s3, s0, s4

Register
File

Cycle 1

Cycle 2

Cycle 3

i1 reads s1, s2

i2 reads s0, s4 i1 calculates s0

Hazard #1:
Read-After Write (RAW) Hazard

Fetch WritebackDecode Execute Memory

i1: addi s0, zero, 1

i2: addi s1, s0, 0 s0 should be 1, s1 should be 1

Cycle 1 s0 = 0

Cycle 2 s0 = 0

Cycle 3 s0 = 0

Cycle 4 s0 = 0

Cycle 5 s0 = 0

Cycle 6 s0 = 1

i2 reads s0, but s0 is still zero!

Solution #1: Stalling

❑ The processor can choose to stall decoding when RAW hazard detected

Fetch WritebackDecode Execute Memory

Register
File

Cycle 1

Cycle 2

Cycle 5

i1 reads s1, s2

i2 not decoded i1 writing s0

…

Cycle 6

i1: add s0, s1, s2

i2: add s3, s0, s4

i2 reads s0 i1 retired

Sacrifices too much performance!

Pipeline “bubbles”

Little’s law: 𝐿 = 𝜆𝑊 → 2 = 𝜆*5

Solution #1: Stalling

Fetch WritebackDecode Execute Memory

i1: addi s0, zero, 1

i2: addi s1, s0, 0

Cycle 1 s0 = 0

Cycle 2 s0 = 0

Cycle 3 s0 = 0

Cycle 4 s0 = 0

Cycle 5 s0 = 0

Cycle 6 s0 = 1

i2 stalled until s0 is applied

Cycle 7 s0 = 1

“Pipeline bubble” – Wasted cycles

Sacrifices too much performance!

i2 reads correct s0

Solution #2: Forwarding (aka Bypassing)

❑ Forward execution results to input of decode stage
o New values are used if write index and a read index is the same

Fetch WritebackDecode Execute Memory

Register
File

i1: add s0, s1, s2

i2: add s3, s0, s4

Cycle 1

Cycle 2

Cycle 3

i1 reads s1, s2

i2 reads s0, s4 i1 calculates s0

But! Uses new s0 forwarded from execute

No pipeline stalls!

Solution #2: Forwarding details

❑ May still require stalls for a deeper pipeline microarchitecture
o If execute took many cycles?

❑ Adds combinational path from execute to decode
o But does not imbalance pipeline very much!

Fetch WritebackDecode Execute Memory

Register
File

Instruction
bit decode

Register file
access

Execute

Combinational path only to end of decode stage!Question: How does hardware detect hazards?

Solution #2:Forwarding

Fetch WritebackDecode Execute Memory

i1: addi s0, zero, 1

i2: addi s1, s0, 0

Cycle 1 s0 = 0

Cycle 2 s0 = 0

Cycle 3 s0 = 0

s0 is still zero, but i1 results forwarded to i2

results forwarded to decode within same cycle

Cycle 4 s0 = 0

Cycle 5 s0 = 0

Cycle 6 s0 = 1

Forwarding is possible in this situation
because the answer (s0 = 1) exists somewhere in the processor!

Datapath with Hazard Detection

Not very intuitive… We will revisit with code later

Hazard #2:
Load-Use Data Hazard

❑ When an instruction depends on a register updated by a previous
instruction
o e.g.,

❑ Forwarding doesn’t work here, as loads only materialize at writeback
o Only architectural choice is to stall

i1: lw s0, 0(s2)

i2: addi s1, s0, 1

Fetch WritebackDecode Execute Memory

Register
File

Hazard #2: Load-Use Data Hazard

Fetch WritebackDecode Execute Memory

Cycle 1 s0 = 0

Cycle 2 s0 = 0

Cycle 3 s0 = 0

i2 stalled until s0 is updated

Forwarding is not useful because the answer (s0 = 1) exists outside the chip (memory)

i1: lw s0, 0(s2)

i2: addi s1, s0, 1

Cycle 4 s0 = 0

Cycle 5 s0 = 0

Cycle 6 s0 = 1

Cycle 7 s0 = 1i2 reads correct s0

A non-architectural solution:
Code scheduling by compiler

❑ Reorder code to avoid use of load result in the next instruction

❑ e.g., a = b + e; c = b + f;

lw x1, 0(x0)

lw x2, 8(x0)

add x3, x1, x2

sw x3, 24(x0)

lw x4, 16(x0)

add x5, x1, x4

sw x5, 32(x0)

stall

stall

lw x1, 0(x0)

lw x2, 8(x0)

lw x4, 16(x0)

add x3, x1, x2

sw x3, 24(x0)

add x5, x1, x4

sw x5, 32(x0)

14 cycles20 cycles

Compiler does best, but not always possible!

❑ Note: “la” is not an actual RISC-V instruction
o Pseudo-instruction expanded to one or more instructions by assembler

o e.g., auipc x5,0x1
addi x5,x5,-4 # ← RAW hazard!

Review: A problematic example

← RAW hazard

← RAW hazard

← Load-Use hazard

← RAW hazard

← RAW hazard

Other potential data hazards

❑ Read-After-Write (RAW) Hazard
o Obviously dangerous! -- Writeback stage comes after decode stage
o (Later instructions’ reads can come before earlier instructions’ write)

❑ Write-After-Write (WAW) Hazard
o No hazard for in-order processors

❑ Write-After-Read (WAR) Hazard
o No hazard for in-order processors -- Writeback stage comes after decode stage
o (Later instructions’ reads cannot come before earlier instructions’ write)

❑ Read-After-Read (RAR) Hazard?
o No hazard within processor

Fetch WritebackDecode Execute Memory

read rf write rf
3 cycle difference

Dangerous if a later instruction’s state access can happen before an earlier instruction’s access

Hazard #3:
Control hazard

❑ Branch determines flow of control
o Fetching next instruction depends on branch outcome

o Pipeline can’t always fetch correct instruction
• e.g., Still working on decode stage of branch

Fetch WritebackDecode Execute Memory

PC

i1: beq s0, zero, elsewhere

i2: addi s1, s0, 1

Cycle 1

Cycle 2

Should I load this or not?

Control hazard (partial) solutions

❑ Branch target address can be forwarded to the fetch stage
o Without first being written to PC

o Still may introduce (one less, but still) bubbles

❑ Decode stage can be augmented with logic to calculate branch target
o May imbalance pipeline, reducing performance

o Doesn’t help if instruction memory takes long (cache miss, for example)

Fetch WritebackDecode Execute Memory

PC

Aside: An awkward solution:
Branch delay slot

❑ In a 5-stage pipeline with forwarding, one branch hazard bubble is
injected in best scenario

❑ Original MIPS and SPARC processors included “branch delay slots”
o One instruction after branch instruction was executed regardless of branch results

o Compiler will do its best to find something to put there (if not, “nop”)

❑ Goal: Always fill pipeline with useful work

❑ Reality:
o Difficult to always fill slot

o Deeper pipelines meant one measly slot didn’t add much (Modern MIPS has 5+
cycles branch penalty!)

But once it’s added, it’s forever in the ISA…
One of the biggest criticisms of MIPS

Eight great ideas

❑ Design for Moore’s Law

❑ Use abstraction to simplify design

❑ Make the common case fast

❑ Performance via parallelism

❑ Performance via pipelining

❑ Performance via prediction

❑ Hierarchy of memories

❑ Dependability via redundancy

Control hazard and pipelining

❑ Solving control hazards is a fundamental requirement for pipelining
o Fetch stage needs to keep fetching instructions without feedback from later stages

o Must keep pipeline full somehow!

o … Can’t know what to fetch

Fetch WritebackDecode Execute Memory

Cycle 1

Cycle 2

Fetch PC = 0

Fetch PC = …? Decode PC = 0

Control hazard (partial) solution
Branch prediction

❑ We will try to predict whether branch is taken or not
o If prediction is correct, great!

o If not, we somehow do not apply the effects of mis-predicted instructions
• (Effectively same performance penalty as stalling in this case)

o Very important to have mispredict detection before any state change!
• Difficult to revert things like register writes, memory I/O

❑ Simplest branch predictor: Predict not taken
o Fetch stage will keep fetching pc <= pc + 4 until someone tells it not to

Predict not taken example

Fetch WritebackDecode Execute Memory

addi

addi addi

addi addibeq

addi addibeqsw t3

addi addibeqsw t3ret

Pipeline bubbles

addibeqsw t2

Mispredict detected!

Fetch correct branch

No state update before Execute stage can detect misprediction
(Fetch and Decode stages don’t write to register)

How to handle mis-predictions?

❑ Implementations vary, each with pros and cons
o Sometimes, execute sends a combinational signal to all previous stages,

turning all instructions into a “nop”

❑ A simple method is “epoch-based”
o All fetched instructions belong to an “epoch”, represented with a number

o Instructions are tagged with their epoch as they move through the pipeline

o In the case of mis-predict detection, epoch is increased,
and future instructions from previous epochs are ignored

Predict not taken example with epochs

Fetch WritebackDecode Execute Memory

addi (0)

addi (0) addi (0)

addi (0) addi (0)beq (0)

addi (0) addi (0)beq (0)sw t3 (0)

addi (0) addi (0)beq (0)sw t3 (0)ret (0)

Mispredict detected!

Fetch correct branch

addi (0)beq (0)sw t2 (1) sw t3 (0)ret (0)

epoch = 0epoch = 1

Ignored
ret (1) beq (0)sw t2 (1) ret (0)

Ignoredret (1) sw t2 (1)

Some classes of branch predictors

❑ Static branch prediction
o Based on typical branch behavior

o Example: loop and if-statement branches
• Predict backward branches taken

• Predict forward branches not taken

❑ Dynamic branch prediction
o Hardware measures actual branch behavior

• e.g., record recent history (1-bit “taken” or “not taken”) of each branch
in a fixed size “branch history table”

o Assume future behavior will continue the trend
• When wrong, stall while re-fetching, and update history

Many many different methods, Lots of research, some even using neural networks!

Pipeline with branch prediction

Fetch WritebackDecode Execute Memory

Branch
Predictor

PC Next PC
Feedback
(For dynamic branch prediction)

❑ Branch predictor predicts what should be the next PC
o Typically based on the current PC as input

❑ Dynamic branch predictors adapt to program using feedback

❑ If prediction is correct, great! If not, make sure mispredicted instructions
don’t effect state
o We looked at the epoch method of doing this (2 bubbles!)

Dynamic branch prediction

❑ Two questions about a PC address being fetched
o Will this instruction cause a branch?

o If so, where will it branch to?

o Both information is needed to predict-fetch a branch

❑ Two architectural entities for predicting the answer to these questions
o Branch History Table (BHT)

• Whether this instruction is an instruction, and if it causes a branch

o Branch Target Buffer (BTB)
• Which address this instruction will jump to

o (There are many variations – This is just a common example)

Dynamic branch prediction

PC

Branch History Table
(BHT)

Branch Target Buffer
(BTB)

method Word predict(Word pc) begin
Word next_pc = pc + 4;
Bit#(10) lsb = truncate(pc);
if (bht[lsb]) next_pc = btb(lsb);
return next_pc;

end

PC + 4

prediction

taken?

Why truncate PC? BHT/BTB is typically small! (2048 elements or so)
Different branches may map to same buffer element… 

Execute stage updates BHT and BTB
with actual behavior (if it is a branch instruction)

Back to the three questions

❑ Is it a branch instruction?
o Execute updates BHT if it is a branch instruction

❑ Is the branch taken?
o BHT stores if the branch was taken last time

❑ Where does the branch go?
o BTB stores where it went to last time

❑ Of course, all three are merely predictions!

Simple example:
1-bit predictor

❑ BHT has one-bit entries
o Most recently taken/not taken

o (“Last time predictor”)

o Does this work well?

❑ How many mispredicts with these taken (T), not taken (N) sequences?
o TTTTTNNNNN

o TNTNTNTNTN

o for (i = 0 … 2) {
for (j = 0 … 2) {
}

}

TTTTTNNNNN
TNTNTNTNTN

Mispredict at j = 0 (T), j = 2 (N)

Simple example: 2-bit predictor

❑ BHT has two bits – Single outlier does not change future predictions
o 00: Strongly not taken, 01: Not taken, 10: Taken, 11: Strongly taken

o Taken branch increases number, not taken branch decreases number

o Counter saturates! Taken after 11 -> 11, Not taken after 00 -> 00

❑ How many mispredicts with these taken (T), not taken (N) sequences?
o TTTTTNNNNN

o TNTNTNTNTN

o for (i = 0 … 2) {
for (j = 0 … 2) {
}

}

TTTTTNNNNN
Initialized to 01: TNTNTNTNTN
Initialized to 10: TNTNTNTNTN

Mispredict once at i = 0 && j = 0 (T), j = 2 (N),

In reality, most SPEC benchmarks record ~90% accuracy with 2-bit predictor

Branch prediction and performance

❑ Effectiveness of branch predictors is crucial for performance
o Spoilers: On SPEC benchmarks, modern predictors routinely have 98+% accuracy

o Of course, less-optimized code may have much worse behavior

❑ Branch-heavy software performance depends on good match between
software pattern and branch prediction
o Some high-performance software optimized for branch predictors in target

hardware

o Or, avoid branches altogether! (Branchless code)

Aside:
Impact of branches

“[This code] takes ~12 seconds to run. But
on commenting line 15, not touching the
rest, the same code takes ~33 seconds to
run.”

“(running time may wary on different
machines, but the proportion will stay the
same).”

Source: Harshal Parekh, “Branch Prediction — Everything you need to know.”

Aside:
Impact of branches

Source: Harshal Parekh, “Branch Prediction — Everything you need to know.”

Slower because it involves two branches

Aside: Branchless
programming

Source: Harshal Parekh, “Branch Prediction — Everything you need to know.”

